

ALS Orbit Stability

Eric Norum, Mike Chin, Greg Portmann, Jonah Weber

BES Light Source Beam Stability Workshop

November 1, 2018

Causes of Undesirable Orbit Motions

Beam Position monitors (BPMs) need to measure orbits over a large range of frequencies

As well as, a range of beam currents, and fill patterns (single to multi-bunch fills)

Orbit Stability Goal (ALS and ALS-U)

	Storage Ring	ALS-U	ALS			
	Electron Energy	2.0 GeV	1.9 GeV			
	Horizontal Emittance (full coupling)	<75 pm (50 pm stretch goal)	2 nm			
	Vertical Emittance	<75 pm (full coupling)	30 pm			
	ID Beam Size (x/y)	<14 µm / <14 µm	251 / 10.4 μm			
	Bend Beam Size (x/y)	<5 μm / <10 μm	40.3 / 7.1 μm (Center bend)			

- ALS has 7 to 10 µm vertical beam sizes
 ALS-U will have 5 to 14 µm beam sizes in both planes
- The requirement is 1/10 the beam size

-> 0.5 μm @ the Bends, 1.4 μm @ the IDs

• The goal is 1/20 the beam size

-> 0.25 μm @ the Bends, 0.7 μm @ the IDs

- → ALS and ALS-U have similar requirements
- → The BPM development goal is 200 nm RMS from a few days to 10 kHz

ALS and ALS-U BPM Needs

Recently built 158 BPMs for ALS

- 114 Storage Ring
- 37 Injector
- And a few spares

ALS-U will need

- 192 in the storage ring (16 /sector)
- 72 in the accumulator ring (6 /sector)
- ~20 in the transfer lines

ALS Instrumentation Group

Missing: Rick Lellinger who coordinates purchases, fabrication, and installation

The NSLS-2 BPM

Storage Ring Thermal Racks Regulated to +-0.1C

- BNL started a new BPM development for the NSLS-II project.
- We helped test this BPM at ALS before NSLS-II was built (similar RF frequencies)
- We leveraged this development for the new ALS BPM
- ALS doesn't have temperature controlled racks, so we further developed the pilot tone compensation method that NSLS-II started.

We are very grateful to the NSLS-II team for their openness and expertise! Kurt Vetter, Joe Mead, Kiman Ha, Yuke Tian, Marshall Maggipinto, Joe Delong, Al Dellapenna, Danny Padrazo, ... And others including Jim Sebek at SSRL.

ALS BPM Development

- Identical DFE as the NSLS-II BPM
- The AFE was modified for ALS

BPM ADC Spectrum w/ & w/o pilot tone

Pilot tone combiner was installed in the tunnel for temperature stability.

SAW Filter Thermal Analysis

Temperature introduces a relatively curvy response in the transfer function. This indicates that a pilot tone correction can only work if the tones are close to the RF frequency. In fact, a pilot tone at +2 MHz from at RF (~499.645 MHz) would indicate that the system gain goes down with temperature, whereas at RF the gain goes up.

RF (blk) + calibration tone at 1/64, 1/32, 1/16, 1/8, 1/4, 1/2 a revolution harmonic.

Bandpass Filter Study

The ceramic filter had an improved linear response with temperature change

- We original chose the Lorch ceramic filter (assembled from 4 ceramic blocks)
- Then we change to a mono-block ceramic filter from CTS

M. Chin

BPM AFE Design Changes from NSLS2

AFE Block Diagram Simplified

BES Light Source Beam Stability Workshop, November 1, 2018

ADVANCED LIGHT SOURCE

Parameters for the SR and Booster

Parameter	SR	BR
Circumference [m]	196.8	75
Harmonic Number	328	125
RF Frequency [MHz]	499.6472	499.6472
Revolution frequency [MHz]	1.5233	3.9972
Samples per turn	77	29
Sample Frequency [MHz]	117.297	115.918
Sample period [nsec]	8.525	8.627
Turns in an FA sample	152	380
FA [kHz]	10.022	10.526
SA [Hz]	10.022	

BES Light Source Beam Stability Workshop, November 1, 2018

150

BES Light Source Beam Stability Workshop, November 1, 2018

BERKELEY LA

ADVANCED LIGHT SOURCE

BPM Firmware: Preliminary Processing Block

BES Light Source Beam Stability Workshop, November 1, 2018

E. Norum

BPM Noise Floor Measurements

Measure setup: one button signal split 4 ways to the BPM inputs.

- BPM meets our 200 nm RMS noise floor goal from .4 Hz to 5 kHz w/ or w/o pilot tone correction.
- Pilot tone correction provides a benefit up to about 1 kHz. RMS noise from .4 Hz to 1 kHz is 75 nm.
- There is room for improving the pilot tone noise floor.

BERKELEY LAP

Beam & Noise Floor at 10 kHz

- The area between the lines shows the possible improvement factor if we upgrade our fast orbit feedback system.
- There isn't much beam motion above 1 kHz. It might be a challenge to measure beam motion above 5kHz. The solution is likely a combination of better ADCs (faster and/or higher resolution) and cleaner pilot tone generators.

4 Day Orbit Drift Measurement

4 Days of 10 Hz Orbit Data

Orbit Drift Measurement (using a 4-way split button signal)

Drift measurement in more detail

- Orbit Drift Measurement (using a 4-way split button signal)
- Maintained \pm .2 μ m RMS over 4 days with pilot tone compensation.

Multi-bunch Turn-By-Turn Orbit Measurement

Noise measurement done at 500 mA using one button split 4-ways.

Multi-bunch Turn-By-Turn Orbit Measurement

Beam spectrum measurement

Single Bunch Turn-By-Turn Orbit Measurement

Two processing modes:

- IQ uses just the RF Rev Harmonic (the normal mode)
- RMS uses the whole spectrum

Turn-By-Turn, Single Bunch Orbit RMS

RMS of TBT Orbit vs Single Bunch Current

IQ uses just the RF Rev Harmonic, RMS uses the whole spectrum.

Data Recorder

- Data buffers for ADC, TBT, FA data streams with capacity up to 2²⁴ samples (~16M)
- Trigger selection: any timing system (MRF) trigger, beam dump, single pass threshold, or software PV.

BPM Health Monitoring

- Health monitoring of temperature, voltages, clocks, etc.
- The pilot tone also provides an opportunity to run diagnostics checks on the BPM electronics during shutdown days. Presently, two pilot tones can be set on 5 different frequencies (including RF), and it could be expanded to include more frequencies.

🔀 /usr/local/ep	oics/R3.15.4/mod	ules/inst —		<	🔀 /usr	/local/epics	/R3.15.4/mo	dules/instr	u —		\times
SR09S:IDBPM1:				SR09S:IDBPM1:							
Wideband Narrowband X: -0.00457 mm 0.2 0.027 μ Y: 0.00887 mm 0.198 0.027 μ Q: -3921 FOFB 121 S: 27967649 Index 121		arrowband 0.027 μ 0.027 μ	Dand Firmware: Oct 10 2018 11:28 027 µ Software: Oct 10 2018 12:46 027 µ Software: Oct 10 2018 12:46			:28:33 2:46:20		DFE: AFE:	155 58		
		0.027 p		Temperature				AFE Supplies			
		-		AFE	DFE		V	Α			
Gain Factor	r RF	Pilot Low	Pilot High	۱	0	33.39	38.17	0	5.50	1.01	
0 0.9636037	6987744	1917147	1900940	-1	1	34.44	39.73	1	3.28	0.79	
1 0.9918434	6999500	1872780	1836688	-1	2	33.16	40.77	2	3.93	2.08	
3 1.0000000	6992077	1849486	1829571		3 34.07 37.80			DFE Voltages			
Peak Reading ADC 0 ADC 1 ADC 2		1020011		4	34.77	FPGA		Board	4.91		
		ADC 2	ADC 3		5	35.23	55.67	FPG	A Core	0.98	3
32768_	03700 03700 03700		32768		5	33.77	FAN	FPGA Aux		2.47	'
02700	02/00	02/00	02/00		· '	00.01	5276		SFP Tem	np RX	μW
28672	28672	28672	28672		Cloc		0 40		0 40.	5 3	77
24576	24576-	24576-	24576-		ADC MHz		117.2	295 1 39		1 7	48
					AFE Ref		Synce	ed 2		1 4	16
20480	20480-	20480-	20480-		AFE PLL		Lock	Locked		Link Up Rx	
16384	16384-	16384	16384-		FA Marker		Synce	ynced C			
12288	12288	12288	12288		SA Marker		Synced		Cell		
12200	12200-	12200-	12200		Demod LO		Synced _{CCW}		CCW	II LINK Faults	
8192	8192-	8192	8192		SD F	RF Stb	Sync	ed	CW		0
4096	4096	4096	4096		SD F	'l Stb	Sync	ed	EVR	Locke	ed
					A	DC clock (delay	7 S	A Log	Acti	ve
الد ن	الـ ۱	الــ0	ات_ں								

BPM R&D

The wish list is the following.

- Faster ADCs (presently ~125MHz)
 - 77 Samples / SR turn is a little low
- Component R&D
 - Bandpass filters
 - DAT, amplifiers, ...
- Cleaner pilot tones
- 4 Channel ADCs
- Develop a pilot tones on RF compensation method

Hopefully ALS-U will provide an opportunity to address these issues.

Orbit Stability

Fast orbit feedback

Cell Controllers and FOFB

The ALS Cell Controller

- Conceptually similar to NSLS2 FOFB System
- Different hardware, firmware, and software

Multiple Functions

- FOFB Collects BPM data at 10 kHz, computes the fast orbit feedback compensation, communicates to the fast power supplies
- Generates the pilot tones for the BPMs
- Fast orbit interlock (relay output)

Each DAT is individually controlled

Fast orbit feedback architecture

MRF: Events / Timing Data (fiber fanouts)

Fast Orbit Feedback System

- FPGA based, one cell controller per SR sector
- 3.125 Gb/s fiber links to local BPMs and to neighboring units
- 1 Gb/s ethernet fiber link to local fast corrector power supplies
- 10 kHz update rate
- < 20 μs latency from facility timing system 'fast acquisition' marker until new power supply setpoint transmission. Includes time to:
 - acquire position values from all local BPMs
 - acquire position values from all other fast feedback units
 - compute new power supply setpoints
 - transmit packet to local power supplies
- Provides orbits interlocking (relay output) at the 10 kHz rate with approximately 20 μ s latency from the start of a BPM acquisition.

Orbit Feedback SystemTransition Plan

- Transitioning from Bergoz BPMs to our new BPM
 - Present state is,

70 Bergoz, 52 New BPMs

In 2019 we hope to transition to,

12 Bergoz, 112 New BPMs

- The present FOFB system uses both Bergoz and new BPMs at a 1 kHz data rate. System commissioned by Christophe Steier, Simon Leemanns, Tom Scarvie, Eric Williams,
- In 2019, we hope to transition to new Caen power supplies and increase the data rate to 10 kHz.
- We also have funding to replace the aluminum vacuum chambers at the fast correctors with higher bandwidth stainless steel chambers.

> Aiming for a closed loop bandwidth between 500 to 1000 Hz

BPM Position Monitor

Fun Measurements

Beam Dump Monitoring at ALS

ADC buffers can also provide some limited fill pattern information. 500 mA multi-bunch TBT is about .5 μm rms

Pseudo Single Bunch Kicker – Kicking Every Other Turn

BL 3.1 Image for Single Bunch, 750 Volts on the kicker, 1.52/2 MHz

BES Light Source Beam Stability Wc

Pseudo Single Bunch Kicker – Kicking Every 5th Turn

2-Bunch, Asymmetric Current

Fill pattern

- About 1.2 mA each in bunches 144, 145, 146
- About 4.0 mA each in bunches 308, 309, 310

The fast injection magnets were used to kick the beam. The orbits were computed using RMS ADC counts over half a turn (77 samples / turn): Orbit1 from ADC samples 1:38 (the 1.2mA bunches) Orbit2 from ADC samples 40:77 (the 4.0mA bunches)

2-Bunch, Asymmetric Current

.....

BERKELE

Conclusion

- The pilot tone system is working well
 - For real-time compensation of BPM electronic errors
 - As a diagnostic tool for BPM health and performance
- We'd like to thank ALS management for supporting this effort!
- We'd like to thank the NSLS-II team for being bold and taking a new direction with BPM development. And providing us open access to their work.

ExtraBunch CurrentSlidesMonitor (BCM)

Bunch Current Monitor (BCM)

The bunch current and phase can be estimated from a BPM button signal by sampling a button signal at just off the RF frequency.

9000

9200

Sample (~62.5 ps/sample)

32 samples / 2 nsec

4142

Max:

8800

4000-

2000-

-2000

Bunch Current Monitor (BCM)

